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Abstract 

Cryptography provides the means to securely communicate data between 

authorized entities by using mathematical transformations which utilize pre-shared 

cryptographic keys. The need to share key material with authorized entities in a secure, 

efficient and timely manner has driven efforts to develop new key distribution methods. 

The most promising method is Quantum Key Distribution (QKD) and is considered to be 

“unconditionally secure” because it relies upon the immutable laws of quantum physics 

rather than computational complexity as the basis for its security. A third party 

eavesdropping on a QKD quantum channel would be detected because the observation 

would introduce errors in the quantum channel. Unfortunately, the non-idealities present 

in actual implementations of QKD systems also result in errors manifested in the 

quantum data channel. As a consequence, an important component of any QKD system is 

the error reconciliation protocol which is used to identify and correct inconsistencies in 

the exchanged key material. This research provides an empirical analysis of the Cascade 

secret key reconciliation protocol to measure its efficacy under different error rates, 

sampling rates, error distributions and larger sifted key sizes. The key findings of the 

research are that 1) an error sampling rate of 25% provides optimal Cascade performance 

when using variable block sizes, 2) the choice of sifted key length directly impacts the 

accuracy of Cascade error estimation, 3) the Cascade algorithm performs well in burst 

error environments with an initial permutation, and 4) a tradeoff exists between size of 

the buffer and the amount of information leaked. 
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AN EMPIRICAL ANALYSIS OF THE CASCADE SECRET KEY RECONCILIATION 

PROTOCOL FOR QUANTUM KEY DISTRIBUTION 

 

 

I. Introduction 

 

1.1 Problem Statement 
 

The field of quantum key distribution is relatively young compared to other forms 

of cryptography. Although the security of different schemes of quantum key distribution 

have been studied, modified, improved upon, and even debunked, there is still a 

tremendous amount of work that needs to be accomplished to create a truly secure and 

reliable system. Improvements can be made at nearly every level from the actual 

hardware implementation and software protocols to the actual photon sources and 

sensitivity of detectors. With the introduction and sale of actual commercial quantum key 

distribution systems and hardware to be used for secure data transmissions, it is 

increasingly important that the specific and somewhat murky details of quantum key 

distribution systems are explored and completely characterized. Although quantum key 

distribution security is protected by the immutable laws of quantum mechanics, it is vital 

that current implementations are tested to account for the fact that technology has not 

reached the point where a true, simple and secure quantum key distribution system is 

feasible, lest we start protecting our confidential data with systems that may not be as 

robust and secure as we believe them to be. 
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One such component of a quantum key distribution system that requires more 

scrutiny is the error reconciliation protocol. Since the quantum channel of a key 

distribution system travels along a fairly lossy fiber optic cable or the even more lossy 

free space medium of the atmosphere, error correction and detection protocols are critical 

to the proper operation of quantum key distribution. Further, error detection is critical in 

determining if an eavesdropper is present in the system. This thesis focuses on the 

Cascade error reconciliation protocol. Although Cascade is one of the more heavily 

researched reconciliation protocols in the literature, there are still many questions that 

remain about the efficacy and efficiency of the protocol in quantum key distribution.  

1.2 Research Purpose 

The purpose of this research is to explore the Cascade reconciliation protocol in a 

simulation environment to better ascertain the boundaries of the algorithm’s usefulness in 

the detection and correction of errors during the reconciliation phase of public channel 

quantum key distribution. This thesis seeks to answer the following research questions 

regarding the efficacy of Cascade: 

 How does error sampling and error estimation impact the Cascade protocol?  

 How sensitive is the Cascade protocol to incorrect error estimation?  

 What is the ideal initial key length for the Cascade protocol?  

 What is the relationship between the initial key length, error estimation, error rate, 

and information leakage in the Cascade protocol? 

 What is the impact of burst errors on the operation of the Cascade protocol?   
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 What is the impact of an initial permutation of the key in the operation of the 

Cascade protocol? 

 How does Cascade compare to other error reconciliation protocols? 

1.3 Research Goals 

 The primary goal of this research is to determine the true bounds of the Cascade 

protocol in the reconciliation portion of quantum key distribution. The maximum and 

minimum failure points of Cascade are explored within multiple variable solution spaces 

and the effects of larger key sizes are investigated. In addition to answering the research 

questions and assessing the common metrics used to assess error reconciliation protocols, 

an exploration of the Cascade’s performance with additional metrics is outlined in 

Chapter 3.  

1.4 Thesis Structure 

This research is organized into five chapters with the first chapter providing the 

introduction.  Chapter 2 is a literature review of pertinent background information related 

to quantum key distribution and the Cascade reconciliation protocol.  Chapter 3 discusses 

a methodology for conducting the experimental analysis of the Cascade protocol.  

Chapter 4 presents results from an empirical analysis of Cascade that is used to determine 

the usefulness and efficiency of the algorithm within the variable trade space.  Chapter 5 

provides the summary of the research findings and offers a proposal for future areas of 

interest in the domain of quantum key distribution.   
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II. Literature Review 

2.1 Introduction 

This chapter gives the reader an overview of concepts, definitions, and issues 

pertaining to the research.  First, historical perspectives on cryptography and quantum 

key distribution are reviewed.  Next, the evolution of quantum key distribution protocols 

is overviewed, followed by key reconciliation, error detection and correction, and privacy 

amplification.  Then, the Cascade protocol is reviewed along with several other 

reconciliation protocols. Finally, this chapter concludes by discussing the importance of 

error detection and correction algorithms to quantum key distribution. 

2.2 Cryptography 

Cryptography is considered to be both a science and an art and examples range 

from the unusual arrangement of hieroglyphs on an Egyptian Tomb dating to around 

2000 BCE to such modern day systems as the Advanced Encryption Standard (Singh, 

2000). Cryptography has been around for thousands of years, and although the form of 

cryptography has changed over the years based on the technology of the times, the goal 

of cryptography has remained the same regardless of how it was implemented. 

Cryptography is the art of keeping secret information secret so that only intended 

recipients can share the information (Ferguson & Schneier, 2003). The actual information 

or plaintext consists of the plain message that the sender wishes to remain unknown to 

unauthorized recipients. The plaintext is encrypted into ciphertext using a cipher or 

algorithm to encode the information into an unreadable form. The intended recipient then 

decrypts the ciphertext back into plaintext using a key to extract the secret information.        



 

5 

 

 Cryptography is used for four main purposes. The original and oldest purpose of 

cryptography was to maintain privacy between two or more parties. In essence, an 

unauthorized recipient of the ciphertext or an eavesdropper would not be able to make 

any sense of the ciphertext and be unable to extract the secret information encoded 

within. More recent uses of cryptography include authentication, integrity, and non-

repudiation (Schneier, 1996). Authentication is the guarantee that the message is really 

from the entity that claims to have sent it. Integrity means that the encrypted message 

cannot be modified without the modification being detected by the intended recipient. 

Non-repudiation means that neither the sender nor the receiver can deny having sent or 

received the message respectively. With the advent of computing, cryptographic methods 

have increased in complexity both due to the ability of computers to handle increasingly 

complex ciphers and to the ability of using the same computers to break complex ciphers. 

The age of the computer in cryptology is indeed a two-edged sword.   

 Modern cryptographic methods utilize one or more of the following systems: 

symmetric or secret key, asymmetric or public key, and hash functions (Schneier, 1996). 

In secret key systems, both the sender and the receiver utilize an identical key to encrypt 

and decrypt the plaintext and ciphertext (Schneier, 1996). To ensure authentication and 

non-repudiation, each sender and recipient needs to have a unique set of keys for their 

transaction if there are more than two possible recipients or senders. As a result, the 

management of the keys can become complex and if there is a breach, new keys need to 

be sent to all recipients. This is known as key distribution. The problem with key 

distribution is that the keys must be securely distributed to all parties before encrypted 

messages can be sent. It is possible to overcome this vulnerability by having a trusted 
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courier or agent deliver the key to the distant party, but it is easy to see how this can be a 

problem especially of one wants to key or rekey a satellite in orbit.  

One solution that is used to counter a situation where the key needs to be shared 

combines the secret key system with another encryption method called asymmetric or 

public key (Schneier, 1996). Public key encryption pairs a public or known key and a 

secret key. If one of the keys (Public/Private) is used to encrypt the plaintext, the other 

key (Private/Public) from the same entity must be used to decrypt the ciphertext. The 

public key method can be more robust than symmetric key encryption in terms of key 

management, but it requires that the keys be generated in a way that prevents the 

reconstruction of one key from the other. One way hash functions are also used in 

modern cryptography systems. These hash functions take a longer length plaintext and 

transform it into a shorter ciphertext of fixed length (Schneier, 1996). Hash functions are 

designed so that the hash cannot be back calculated into the original plaintext.  

 For the purpose of outlining encrypted communication transactions, the literature 

commonly uses the names Alice, Bob, and Eve to describe the entities involved in 

cryptographic transactions. Alice and Bob are the senders and recipients of the 

information and Eve, for eavesdropper, is an unwanted and assumed to be malevolent 

third party that is trying to gain access to the plaintext (Ferguson & Schneier, 2003). 

Since most cryptographic protocols and methods rely on the computational difficulty of 

mathematical functions to maintain secrecy and security of the ciphertext, given enough 

computing power, most of not all protocols could be compromised. In addition, classical 

protocols do not function in a way that enables Alice and Bob to detect whether an 

eavesdropper, Eve, is potentially intercepting the ciphertext. In order to combat these 
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shortcomings, a subset of quantum cryptography, quantum key distribution, is used to 

generate a secret, random key and share it securely between Alice and Bob, regardless of 

the existence of an Eve.  

2.3 Quantum Key Distribution 

Stephen Wiesner, a graduate student at Columbia University in the late 1960’s 

and early 1970’s, proposed the groundwork theory concerning the use of certain 

properties of quantum mechanics to allow for secure communications (Wiesner, 1983).  

Wiesner’s work involved two ideas that utilized the properties of quantum mechanics. 

The first was a proposal to create fraud-proof bank notes by embedding a quantum 

particle within them that could not be duplicated by counterfeiters. Since the core idea of 

the theory required the ability to store the quantum particles for arbitrary periods of time, 

a feat technologically impossible at the time, Wiesner’s work was not published and 

acknowledged until years later (Wiesner, 1983). The other idea concerned the 

transmission of two messages that were entangled so that reading one of the messages 

invariably destroys the other. Wiesner referred to this transmission as “multiplexing”. By 

encoding the information in the messages into qubits of multiple conjugate bases, when 

one basis is observed or measured, the state of the qubits are collapsed onto that basis, 

destroying the information that was encoded within the other basis. Since the purpose of 

cryptography is to ensure that the information is not readable by an eavesdropper, the fact 

that in “multiplexing” an eavesdropper invariably destroys an intercepted message upon 

reading it was seen as an obtainable holy grail of cryptography and the field of quantum 

cryptography came into being (Brassard, 1993). 
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Quantum key distribution relies on the laws of quantum physics to maintain 

secrecy in key distribution as opposed to relying on the mathematically complex 

calculations that classical cryptography utilizes (Singh, 2000). Unlike classical 

information bits that can be only either a 1 or a 0, a quantum bit or qubit can be 1, 0, or a 

superposition of the two states. In quantum key distribution, the quantum states are 

represented as photons. These photons follow the tenants of quantum mechanics, 

specifically the Heisenberg Uncertainty Principle, the Principle of Indeterminacy, 

entanglement, and Schrödinger’s Paradox (Townsend, 2000). Quantum key distribution 

also relies on the no cloning theorem, which states that an arbitrary and unknown 

quantum state cannot be copied identically. As a result, any measurement of a qubit will 

force it into a deterministic state that depends upon the method that was used to measure 

it. By collapsing the state in this fashion, the original state of the qubit is irrevocably lost 

or destroyed. Essentially, the qubit remains as a construct in 2-dimensional space until it 

is measured, collapsing the state onto a single one-dimensional axis pair. The term basis 

is used to describe the orthogonal axes that the qubit occupies when measured. It is in the 

basis that the qubit encodes information into the classical values of 0 and 1. In addition, 

by utilizing the fact that the polarization of a qubit encoded photon cannot be measured 

simultaneously in both the vertical/horizontal and diagonal bases, no measurement can 

determine the state of the photon qubit completely. Since the power of quantum key 

distribution is anchored in the fundamental laws of quantum dynamics, it is immune to 

the ever increasing computational power provided by the computer age if implemented 

correctly. The unique aspect of quantum key distribution is that an eavesdropper will, by 

simply observing the quantum channel, introduce changes in the information flowing 
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through the channel in the form of errors. By monitoring the error rate of the quantum 

channel, the legitimate sender and receiver can determine if the channel has been 

compromised (Brassard, 1993). Unfortunately, since the state of the art in technology has 

not completely kept pace with the tenants of secure quantum key distribution, 

technological limitations force additional steps to be taken to ensure secure key 

distribution.       

2.4 Evolution of QKD Protocols 

Several quantum key distribution protocols have been created since Wiesner’s 

pioneering work in quantum cryptography. The protocols are named by the authors’ 

surname initials and year of publication. The first true quantum key distribution protocol 

was proposed by Charles Bennett and Gilles Brassard (Bennett & Brassard, 1984). 

Bennett and Brassard proposed a protocol, known as BB84, which took advantage of the 

multiplexing proposed by Wiesner. The basis of security for BB84, along with most 

QKD protocols, is that an eavesdropper will induce a measureable error in the quantum 

channel, allowing for their presence to be detectable by the sender and receiver. Figure 1 

shows the actors and channels utilized by BB84 and most forms of QKD. Artur Ekert 

proposed E91, a protocol that distributes entangled photon pairs to each party in the 

transaction (Ekert, 1991). Like BB84, E91 utilized a classical channel and a quantum 

channel. SARG04,   created by Scarani et al, is a protocol that directly modified the 

BB84 protocol. SARG04 replaces the single-photon source with attenuated laser pulses 

(Scarani, Acín, Ribordy, & Gisin, 2004). A more recent protocol, S09, was proposed by 

Eduin Serna (Serna, 2009). Unlike BB84 and its variants, S09 drops the classical channel 
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and uses two quantum channels. As a result, Alice can transmit key material to Bob and 

other receivers securely without compromising any key material on a classical channel. 

Since BB84 is the most common protocol used in QKD systems, it will be the protocol 

discussed in detail below.   

 

 

Figure 1. BB84 Actors and Channels  

 

2.5 BB84 QKD Protocol in Depth  

Relying on the security gained from its dependence on the no cloning theorem, 

BB84 utilizes photon polarization to encode classical bits into qubits. The protocol 

described by Bennett and Brassard utilizes a public classical channel and a quantum 

channel as seen in Figure 2. Since it is impossible to eavesdrop on the quantum channel 

without disturbing the information detectibly, the quantum channel is immune to passive 

eavesdropping. The opposite is true for the classical channel as long as it can be secured 
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with classical authentication methods. Qubits are created by using photons polarized 

using mutually unbiased polarization bases. There are several types of polarization that 

can be chosen including rectilinear or 0 and 90 degree polarization, diagonal or 45 and 

135 degree polarization, and circular or left-handed and right-handed polarization. 

Illustrations of the various polarizations are shown in Figure 2. As long as the two bases 

chosen are not orthogonal, they can be used to encode qubits securely since a qubit that is 

polarized in one basis will effect a random measurement in the conjugate basis. By 

choosing bases that are non-orthogonal, the protocol ensures that an incorrect 

measurement of a qubit will destroy its encoded information. In addition, the destruction 

of the information can be measured, revealing the presence of an eavesdropper.  

 

Figure 2. Possible BB84 Polarization States 
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BB84 utilizes the rectilinear and diagonal bases for encoding photons into qubits. 

The goal of BB84 is to satisfy the requirements of an encryption scheme known as One 

Time Pad (OTP). OTP is a completely secure encryption method if the key generation is 

truly random and the key is the same length as the message to be encrypted. In BB84, 

Alice, the sender, randomly generates photons in 0, 45, 90, or 135 degree polarizations. A 

critical assumption of the protocol is that the system only generates single photons and 

not bursts of photons. With today’s state of the art in laser systems, it is not presently 

possible to construct single-photon sources or detectors. However, it is possible to 

modulate laser sources and bias detectors to increase the probability of single photon 

emission and detection while reducing the number of multi-photon packets that are 

emitted. In effect, the actual QKD systems have sources that are “mostly” single-photon. 

Alice generates the key material by randomly choosing key bits and basis. For BB84, a 0 

is encoded as either a 90 degree polarized photon in the rectilinear basis or as a 45 degree 

polarized photon in the diagonal basis. Likewise, a 1 is encoded as a 0 degree 

polarization photon in the rectilinear basis or as a 135 degree polarized photon in the 

diagonal basis. Alice records the polarization state, basis and time that each photon is sent 

to Bob, and transmits the photons through the quantum channel one at a time. Bob, the 

receiver, receives the encoded photons and measures their polarization states, choosing 

his measurement basis randomly. Bob then records the measurement basis, the measured 

polarization state, and the time the photon was received. Since both the basis encoding 

and measurement is random, Bob can expect to correctly choose the right measurement 

basis 50% of the time. Once the entire key is transmitted, Alice and Bob utilize the 



 

13 

 

classical channel to compare Alice’s actual basis versus Bob’s measured basis, discarding 

all improperly measured qubits for which the bases were mismatched. The key material 

remaining is called the sifted key. At this point, if there were no errors in transmission, 

Alice and Bob should have an identical, random key. The entire process is known as 

distillation. The steps of distillation are shown in Figure 3. Appendix A shows an 

example operation of the BB84 QKD protocol. 

 

 

Figure 3. The Steps of Quantum Key Distribution 

 

2.6 Key Sifting and Error Estimation  

 Since a fundamental aspect of quantum key distribution is the measurement of 

basis for bits sent and received, there will be bits in the raw key on which Alice and Bob 

disagree regarding basis. After Bob and Alice exchange raw key material, they must 

account for differences resulting from bits that Bob measured using a basis that did not 

match Alice’s chosen sending basis. This process is known as sifting. During the sifting 
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process, Bob transmits information over the public channel to Alice regarding the basis 

that he measured for each bit. Alice then responds with a yes for bases that she and Bob 

agreed upon. Once the mismatched bits are identified, Alice and Bob throw them out and 

the result is the sifted key. In 1999, Ardehali, Chau, and Lo published an optimization for 

the sifting process that can potentially result in increased throughput (Ardehali, Chau, & 

Lo, 1999). As opposed to an unbiased method of choosing and measuring bases, the 

authors recommend using a biased method for choosing the bases. Given that the 

probability of Alice and Bob choosing matching bases is 

                                                      (1) 

where  is the probability of choosing one basis and  is the probability of choosing 

the other basis. By increasing the probability that both Alice and Bob choose matching 

bases, fewer bits are lost through sifting, and throughput, or key rate, is increased. 

Unfortunately, it is also possible for Eve to bias her measurement choice and increase her 

probability of choosing the same basis as Alice sends. This leads Ardehali, Chau, and Lo 

to also propose a modified method for error estimation. Error estimation is an important 

step of most quantum key distribution protocols. By choosing a set of random sifted bits 

and comparing them over the public channel, Alice and Bob can calculate an estimated 

error rate for the remaining bits. This is the error estimation method used by BB84. Alice 

and Bob use a predetermined “failure” error threshold to decide whether or not an 

eavesdropper is present. The actual error rate stems from both noise in the channel and 

possibly, interference from an eavesdropper. If the estimated error rate exceeds the 

acceptable error rate, then the key distribution process is terminated and started again 

from the beginning with a new raw key. In the literature, the most common failure error 
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rate chosen is greater than or equal to 0.15 (Nakassis, Bienfang, & Williams, 2004). At 

0.15 error rate, an eavesdropper could have intercepted over half of the bits transmitted. 

Ardehali et al. modify the error estimation process by choosing two samples of bits, one 

from each basis, and obtaining an error estimate for each. By comparing the two basis-

biased error rates to the failure threshold and choosing the highest, Alice and Bob can 

effectively reduce any benefit that Eve may gain from biasing her basis measurements. 

Error estimation is also an important part of most error reconciliation protocols. If the 

estimated error rate is below the “failure” error threshold, Alice and Bob proceed with 

error reconciliation, as discussed below. 

2.7 Reconciliation and Privacy Amplification 

Error reconciliation is the process by which Alice and Bob correct errors resulting 

from noise and/or eavesdropping in the quantum channel. One of the most important 

goals of reconciliation is to enable Alice and Bob to detect and correct errors while 

simultaneously revealing as little information as possible to Eve. In fact, Eve gains as 

many bits of information concerning the secret key as the number of bits shared between 

Alice and Bob over the public channel (Van Assche, 2006). Christian Kollmitzer and 

Mario Pivk give the minimum information needed for Bob to correct his key as  

                           H(A|B) = nH(p)                                                           (2) 

where n is the sifted key length, H is the Shannon entropy, A and B are Alice and Bob’s 

sifted keys, and p is the error rate (Kollmitzer & Pivk, 2010). In the case of a discrete 

communications system, we use the binary entropy function described by MacKay 

(MacKay, 2005) for the Shannon entropy H seen in Equation 2: 
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                                          (3) 

As a result, nH(p) is often used as a benchmark in reconciliation protocols as any 

protocol reveals at least nH(p) bits as a lower bound. Thus, the theoretical limit of a 

reconciliation protocol’s efficiency , is given as 

                                                                                                                   (4) 

(Yan, Ren, Peng, Lin, Jiang, & Liu, 2008). The closer a protocol is to the bound; the 

more efficient it is in reducing leakage. In order to preserve the integrity and security of 

their keys, Alice and Bob utilize one of two types of reconciliation. The first type is 

interactive reconciliation, which consists of two-way interaction between Alice and Bob 

over a public classical channel for the detection and correction of errors. The second type 

of interaction is one-way reconciliation in which a decision is made beforehand regarding 

how errors are detected and corrected. One-way protocols, by their nature, tend to reveal 

less information over the public channel than interactive protocols where possibly many 

messages are openly passed back and forth. Although there are many examples of 

reconciliation protocols in both quantum key distribution and classical cryptography in 

general, the focus of this paper will be the Cascade reconciliation protocol.  

Privacy amplification is the step that follows reconciliation and involves the effort 

to reduce the amount of knowledge concerning the secret key that Eve has gained during 

reconciliation over the public channel and key transmission over the quantum channel. 

The amplification step usually uses a hash function to create a new key. Since the final 

privacy amplified key is generated from a much larger set of bits, each final key bit is 

dependent upon multiple input bits, further reducing the amount of information that Eve 

can have regarding the final key. Gilles Van Assche recommends that the reconciled key 



 

17 

 

of length L be reduced by m bits and then further reduced by a variable parameter s, to be 

L-m-s, where m is the number of bits exposed during reconciliation. The end result is that 

Eve only has 2
-s
 bits of information regarding the key (Van Assche, 2006). The goal of 

the privacy amplification step is the output of a shorter key of which Eve has very little or 

no knowledge. Figure 4 shows the steps of distillation and the key length as the QKD 

process progresses. 

 

 

Figure 4. Distillation Process and Key Length 
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2.8 Cascade Reconciliation Protocol  

 The Cascade error reconciliation protocol is a modification of an earlier protocol 

from BBBSS, proposed by Bennett et al. in 1991 (Bennett, Bessette, Brassard, Salvail, & 

Smolin, 1992). BBBSS utilized an interactive error detection and correction protocol that 

the authors called Binary. BBBSS used a modified BB84 QKD protocol using a circular 

polarization basis instead of the diagonal basis. Other than the basis substitution, BBBSS 

operated as a BB84 implementation.  

 The Binary reconciliation protocol was used during the error reconciliation step to 

find and correct errors introduced into the quantum channel from noise and from 

eavesdroppers. After Alice and Bob obtain an error estimation based on a portion of their 

sifted key, they determine whether the error failure threshold has been breached. If the 

error rate is in excess of the fail threshold, Alice and Bob begin the raw key step again. If 

the estimated error rate is acceptable, Alice and Bob begin the first of a number of passes 

and use a predetermined random permutation, applying it to the sifted key bits. The 

purpose of the permutation is to attempt to spread out the error bits randomly and 

separate consecutive errors from each other. Alice and Bob then divide all of the sifted 

key bits into blocks of  bits dependent upon the estimated error rate with the goal of 

having one or fewer errors remaining per block. Alice and Bob then use the classical 

channel to compare block parities. For blocks where the parities disagree, there must be 

an odd number of errors since an even number of errors would mask each other. The 

block is then divided in half into two smaller blocks of length , and another parity 

check is conducted on the first sub-block. Since there is definitely at least one error in 

one of the sub-blocks, the parity of one sub-block reveals where the error has occurred. If 
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the parity of the first sub-block passes, then the error is in the second sub-block. The sub-

block with the error is further sub-divided and parity checked until the error bit is found. 

The error is then corrected.  

The total number of parity bits exchanged is given as , where N is the 

number of bits in the first block. Since the exchange of parity bits occurs on the classical 

channel, over which Eve can passively eavesdrop, it is assumed that the parity bits give 

Eve information about the secret key. By discarding the last bit of each block and sub-

block involved in a parity check, the information that Eve gains about the key can be 

reduced. Since a number of even errors cannot be detected, the key is then permuted 

again and the Binary search check protocol is run again. In order to reduce the amount of 

discarded bits wasted when a parity check passes, essentially a lost potential key bit, the 

Binary protocol utilizes an additional process during later passes that wastes fewer bits. 

The authors refer to the new mode as confirm and bisect. In this stage, the parity of a 

random subset of the sifted key is calculated and compared. Subsets that fail the parity 

check are subdivided and checked using Binary. The authors of BBBSS recommend 20 

random parity check passes, after which Alice and Bob assume that their reconciled keys 

are identical.         

Brassard and Salvail created the Cascade reconciliation protocol as an 

improvement to Binary in terms of bits leaked during the reconciliation stage (Brassard & 

Salvail, 1994). By increasing the processing steps of the protocol, the authors claimed to 

have improved upon the information leakage problem and reduced bits leaked to the 

theoretical minimum needed to perform reconciliation. The operation of Cascade is 

nearly identical to Binary except that the error bit locations and values are retained for 
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use in later passes. The error bit information is utilized in later passes so that the 

algorithm can correct all odd number errors and then cascade back through the previous 

passes to find even errors that were previously masked. A detailed description of the 

operation of Cascade is given below. 

 

 

Figure 5. Binary Bisection and Cascade Operation 

 

The Cascade error reconciliation protocol begins with an estimated error rate 

analysis of the sifted keys. The analysis is conducted as in BBBSS, with a subset of the 

sifted key compared across the classical channel between Alice and Bob. Alice and Bob 

then divide their sifted keys into blocks with a size dependent upon the error rate. The 

authors determine an ideal initial block size empirically as  where p is the 

estimated error rate (Van Assche, 2006). If the error rate is 0.01, then , or 



 

21 

 

roughly 1 error per block (Brassard & Salvail, 1994). The block parities are then 

compared between Alice and Bob over the public channel, and the Binary protocol is 

utilized to correct errors. The final bit of each block involved is not discarded at this 

point. In addition, all of the information regarding error location is stored. After a 

permutation of the sifted key, a new pass is started. However, unlike in BBBSS, the block 

size is increased to  and another Binary search is conducted. Any errors found 

in this pass could only have resulted from two or more even number of errors that were 

masking each other in the previous pass. Using the information on error location stored 

from the previous pass, the Cascade algorithm returns to the shortest block that involved 

the initially corrected error from pass 1 and bisect it to find the hidden error. The protocol 

proceeds to operate in the same way with all discovered errors, cascading through 

previous passes to find and correct masked bits. After a number of passes, permutations, 

and cascades, the protocol finishes with low probability that errors still remain.  

After the publication of Cascade, a number of works have involved attempts to 

improve upon the algorithm and reduce the information leaked over the public channel. 

Sugimoto and Yamazaki published an improvement that sought to reduce the number of 

leaked bits by noticing that Cascade is highly efficient at correcting errors in the first two 

passes, but with severely diminishing returns versus information leaked with remaining 

passes (Sugimoto & Yamazaki, 2000). Essentially, the authors were able to empirically 

determine that the first pass corrected, on average, 50% of the errors and the second pass 

corrected approximately 50% of the remaining errors. The cascade from the errors in pass 

2 then corrected approximately 25% of the remaining errors. Instead of continuing the 

highly interactive and information leaking Cascade passes, the authors proposed that the 
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third pass switch to the confirm and bisect method used in BBBSS to correct the 

remaining errors. This optimization allowed the modified Cascade algorithm to perform 

more closely to the theoretical output bound than the original Cascade protocol as fewer 

bits were leaked over the public channel in later passes.  

 Other modifications to Cascade involve the protocol’s permutation step. The 

permutation before each pass is intended to spread errors out in order to reduce the 

chance that they will mask each other during parity checking. In 2000, Chen 

recommended replacing the random permutations with an interleaving technique 

optimized to reduce or eliminate error clusters from burst errors (Chen, 2000). Chen 

found empirically that information leakage could be reduced compared to standard 

Cascade. In 2002, Nguyen proposed another modification to the permutation method 

used in Cascade (Nguyen, 2002). Nguyen proposed creating a new block with the first bit 

from each previous block, a second block with the second bit from each previous block, 

and so on until each of the bits has been placed into new blocks. At this point Cascade is 

run normally. This method was shown to improve upon the operation of Cascade.  

  Nakassis et al. propose a complete modification of both the actual Cascade 

algorithm and the error reconciliation steps in general (Nakassis, Bienfang, & Williams, 

2004). In their modification, the authors propose a new method that does not include the 

error estimation step that is usually conducted at the start of error reconciliation. Instead, 

the sifted key is divided and parities are checked until a specific number of sub-blocks 

are found that have parity errors. Using various calculations and empirical sampling of 

data, the authors created a table of possible number of altered bits using Bernoulli error 

distribution probabilities. By comparing the probabilities with the parity errors, the 
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authors are able to determine probable remaining errors after each pass and utilize 7-bit 

hamming codes to correct errors when the remaining errors are estimated to be low 

enough. In 2006, it was shown that the theoretical upper bound for information leakage 

given for Cascade (and by inference, Binary) by Brassard and Salvail was possible to 

exceed in experimentation (Yamazaki, Nair, & Yuen, 2006). Rass and Kollmitzer 

attempted to improve the information leakage and efficiency of Cascade in 2009 by 

replacing Cascade’s doubling block size with a dynamic method utilizing Bayesian 

statistics and information from previous executions to give the algorithm “learning 

capability” (Rass & Kollmitzer, 2009). In 2007, Capraro and Occhipinti attempted to 

improve the computational performance of Cascade by creating a parallel processing 

implementation that focused on maximizing key rate in a hardware setup (Capraro & 

Occhipinti, 2007). Boughattas, Iyed, & Rezig focused their efforts on the integration of 

privacy amplification within the Cascade protocol by studying “interactive discarding” 

methods to maximize both reconciliation efficiency and robustness against eavesdropping 

(Boughattas, Iyed, & Rezig, 2010).   

2.9 Summary  

 This chapter summarized the evolution of quantum key distribution protocols and 

key reconciliation methods that are necessary to conduct the analysis presented in the 

thesis. The BB84 reconciliation protocol was outlined in detail and sifting, error 

estimation, reconciliation, and privacy amplification steps were discussed. An in-depth 

review of the Binary reconciliation protocol, and its successor Cascade, was performed to 

provide a basis of understanding for the research presented later in this paper.  
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III. Methodology 

3.1 Introduction 

 The purpose of this chapter is to describe the environment in which the empirical 

analysis is conducted, explain the experimental design, and discuss the methods that were 

used to analyze the function and utility of the Cascade protocol. An overview of the 

Cascade software implementation is provided. 

3.2 Cascade Implementation 

The Cascade protocol is implemented in C++ code. Four classes are used to 

define and implement the Cascade Protocol: one class is used to store, track, and 

manipulate large bit buffers for Alice, Bob, and for general bit operations, one class is 

used to actually implement the Cascade protocol binary operations and cascading bit 

corrections during passes, a third class is used to provide an input framework for various 

modes available with the implementation and to drive the simulation, and the last class is 

used for permutation and reverse permutation of the sifted key between passes. For sifted 

key generation, the simulation utilizes the pseudo-random number generator Mersenne 

Twister developed by Matsumoto and Nishimura (Matsumoto & Nishimura, 1998).  

 The simulation is run using command line arguments in one of six available 

modes as detailed in Table 1. The mode selected determines which command line 

arguments are available for use. Input arguments are listed in Table 2 and include the 

following: sifted key length, maximum number of passes, permute first pass, number of 

trials, random number generator seed, optional Alice and Bob output file generation, pass 

zero block size, desired errors per block, initial error percent, error distribution type, 
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sample rate, and sample method. For burst errors, the input arguments include number of 

bursts, burst length as a ratio of total errors, and burst distribution type. The output is 

printed to the screen with verbose data printed to a file. Output data includes number of 

bits before sampling, number of bits corrected, errors remaining after sampling, 

percentage of bits corrected, number of bits exposed, exposed percentage, reconciliation 

rate, estimated error rate, and error rate after sampling bits have been discarded. 

 

 

 
 

 

 

 

Table 1. Cascade Simulation Modes and Arguments 

 

ARGUMENT DESCRIPTION (Usage) 

debug Enable verbose debug mode (0 or 1) 

numbits Number of bits in initial sifted key (10 to 1000000) 

maxpasses Maximum number of passes allowed for Cascade (2 to 10) 

pfile Enable optional custom permute file (filename) 

permutepass0 Enable key permutation for pass 0 (0 or 1) 

trials Number of trials (1 to 1000000) 

seed Random number generator seed (0 to 65536 ) 

afile Alice custom sifted key buffer file (filename) 

bfile Bob custom sifted key buffer file (filename) 

Ko Pass 0 blocksize(1 to numbits-1) 

deb Number of desired errors per block (0.10 to 2.5) 

errorrate Initial actual error rate percentage in Bob’s buffer (0.00 to 0.25) 

errordist Error distribution type (0=Uniform 1=Random 2=One Burst 3=Two 

Bursts 4=Three Bursts) 

samplerate Error sampling rate percentage (0.00 to 0.99) 

sampletype Error sampling method (0=uniform 1=random) 

numbursts Number of burst errors to introduce into Bob’s buffer (1 to 10000) 

burstamount Percent of overall errors contained with bursts (0.00 to 0.99) 

bursttype Burst Error distribution type (0=uniform 1=random)  

Table 2. Cascade Simulation Argument Descriptions 
 

MODE ARGUMENTS 

ALL debug   numbits   maxpasses   pfile   permutepass0   trials   seed 

0 afile   bfile   Ko 

1 afile   bfile   deb 

2 errorrate   errdist   Ko 

3 errorrate   errdist   deb 

4 errorrate   errdist   samplerate   sampletype   deb 

5 errorrate   numbursts   burstamount   bursttype   samplerate   deb 
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 After arguments have been accepted and a trial has begun, the bit buffers are 

initialized and cleared and the permute arrays are prepared. A random sifted key is 

generated in Alice’s buffer and copied to Bob’s buffer. A corruption buffer representing 

bit errors introduced during the quantum channel transmission is created using the input 

regarding initial error rate. The corruption buffer is then used to corrupt Bob’s buffer. At 

this point, Alice has a pure buffer with the original sifted key and Bob has a buffer with 

errors introduced. Randomly introduced errors are added using Bernoulli’s Distribution 

where each bit has an equal probability of becoming corrupted. Single burst errors are 

introduced into the buffer in a block and the remaining errors are randomly distributed in 

the remaining buffer. Periodic burst errors are blocks of burst errors that occur at regular 

periods defined by the input number of bursts, burst length, and distribution type. At this 

point, the Cascade protocol begins. An error sampling array is initialized and a number of 

bits in Bob’s corrupted buffer are sampled according to the input arguments. The sampled 

bits are compared to the same bits in Alice’s clean buffer. From this comparison, an 

estimated error rate is computed and the sampled bits are discarded from both Alice and 

Bob’s buffers. Using the estimated error rate, initial block size and number of blocks are 

computed using the input desired errors per block. Rules for minimum and maximum 

numbers of blocks and block size are enforced as per the original Cascade protocol. At 

this point, the Cascade simulation runs through a series of passes where Binary is used to 

dissect and compare bit parities for the blocks between Alice and Bob. When a parity 

mismatch occurs, Alice and Bob dissect the block and compare parities until the error is 

found. After correcting the error, the code “cascades” back through the previous block 

operations correcting error bits that may have been masked previously. The permute class 
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code is then used to permute the buffer and Cascade proceeds to run through Binary 

again and correct more errors. When all errors are corrected or the maximum allowed 

passes is reached, the protocol stops. Summary statistics are printed to the screen and the 

data file. The protocol then proceeds to run through the next trial. After the trials are 

complete, overall trial run averages are output to the screen. Source code for the 

implementation of the Cascade simulation can be found on the included CD. 

3.3 Simulation Metrics 

The performance of an error detection and correction algorithm such as Cascade 

can be measured using a variety of methods. For the experiments outlined in this chapter, 

several important metrics are used to examine the Cascade protocol and determine its 

efficiency and effectiveness for reconciliation. Metrics utilized include estimated error 

rate, error estimation deviation, bits exposed, percent bits exposed, and throughput. By 

varying different Cascade parameters and plotting the various metrics, it is possible to 

gain insight into the impacts on the algorithm and determine how to maximize throughput 

and minimize information leakage, increasing the probability that the final key remains a 

secret shared only by Alice and Bob.  

1. Estimated Error Rate - The estimated error rate is the estimated overall initial 

error rate that is computed by the algorithm during error sampling. The estimated 

error rate feeds directly into the next metric, estimated error deviation.  

2. Estimated Error Deviation- Estimated error deviation is a metric that reveals 

how accurately the algorithm can estimate the rate of errors within the sifted key. 

Accurate error rate estimation is critical to the successful operation of Cascade. 
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Poor error rate estimation is revealed by a larger estimated error deviation as 

perfectly accurate error rate estimation will result in no error deviation.  

3. Bits Exposed- Bits exposed or leaked is a measure of how many bits in the sifted 

key have been revealed over the classical channel, and potentially known to an 

eavesdropper. This metric is extremely important as bits leaked cannot be used for 

final key generation without increasing the possibility that the eavesdropper can 

guess the key. Since the purpose of QKD is to share secret key information 

between Alice and Bob, the ideal algorithm will leak as few bits as possible and 

allow more key bits to be usable.  

4. Percent Bits Exposed- The percentage of bits exposed is the fraction of bits 

exposed over the entire number of bits. This metric is important in revealing the 

overall potential exposure of the protocol to an eavesdropper.   

5. Throughput- Throughput is an important and widely used metric in determining 

the efficacy of reconciliation protocols. Throughput is defined as the number of 

available bits minus bits leaked and then divided by the total available bits. Since 

the bits sampled for error estimation are exposed as well, they must be taken into 

consideration when calculating throughput and subtracted as necessary. The 

throughput is therefore the percentage of reconciled bits remaining after error 

detection and correction. As a result, error detection and correction algorithms are 

ideally designed for maximizing throughput.  
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3.4 Simulation Environment 

The simulations are run on a Windows 7 Ultimate desktop system running Ubuntu 

10.10 (Linux Kernel 2.6.35-38) in a VMware Workstation 7.1.3 virtual appliance. The 

host computer has 12 GB of memory available and an Intel Core i7 960 Quad 3.20 GHz 

CPU. The virtualized guest operating system has 8 GB of memory and two dedicated 

processor cores.  Simulations for the experiments are run from the command line with 

full parameterization.  Status updates are printed to the screen and verbose statistical data 

are written to delimited files.  Multi-parameter runs are completed using batch file 

processing and analysis and graphing of the data are conducted using Microsoft Excel. 

3.5 Experiment 1: Error Sampling Rate 

3.5.1 Objective 

The intent of Experiment 1 is to discover the ideal error sampling rate for the 

protocol. Since the bits sampled for error estimation are discarded, the sampling rate 

chosen has a large impact on the bits remaining for the remainder of the algorithm and 

the length of key available for privacy amplification. As a result, it is beneficial to 

minimize the sampling rate as much as possible while ensuring that the effectiveness of 

error detection and correction is not diminished. 

3.5.2 Simulation Parameters  

Parameters that are affected by error sampling rate are estimated error rate, 

estimated error rate deviation, and bits exposed. Parameters held constant for this 

experiment are sifted key length, maximum number of passes (10), and desired errors per 

block (0.69 as suggested by Brassard and Salvail). The factors that are varied in this 
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experiment are error rate, which varies between 1%, 5% and 10%, and error sampling 

rate, which is chosen to vary from 5% and 50% in 5% increments. The estimated error 

rate deviation is computed as: 

                       (5) 

3.5.3 Methodology 

In this experiment, the ideal error sampling rate is determined by varying the error 

sampling rate and the initial error rate in a series of 300 trials. The outputs of the trials are 

graphed visually to determine how the various error sampling rates affect the estimated 

error rate, estimated error rate deviation, and bits exposed. For determining success, the 

smallest error sampling rate that gives the least variation within the estimated error rate 

and bits exposed is compared to the smallest rate that gives the least estimated error rate 

deviation. Successful trials also detect and correct all errors within the sifted key.  

3.5.4 Assumptions and Limitations 

Initial errors are assumed to be randomly distributed for this experiment. The 

sifted key length is fixed at 500,000 bits and the maximum number of passes is set to 10. 

The ideal number of errors for block, 0.69, was suggested by Brassard and Salvail; 

however, they have reached this number empirically and no theoretical treatment has 

been given. 

Initial error rates greater than 10% are not considered as it is assumed that error 

rates greater than 10% will not significantly impact the error estimation or deviation as 

smaller initial error rates are expected to result in greater variance.  
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3.5.5 Expected Results 

The effects of varying error sampling rates are measured by plotting error 

sampling rate versus estimated error rate, estimated error rate deviation, and percent of 

bits exposed. The results for three initial error rates are given in each plot. Results from 

varying the sampling rate are used to determine a suggested ideal sampling rate that has 

the least impact on the other factors. The suggested ideal sample rate is then utilized in 

the remaining experiments. 

3.6 Experiment 2: Sifted Key Length, Error Estimation, and Bits Exposed 

3.6.1 Objective 

The intent of Experiment 2 is to discover the ideal sifted key length for the 

protocol. Since the sifted key length has a direct impact on the bits remaining for privacy 

amplification, it is important to optimize the sifted key length in order to account for bits 

lost to error sampling and bits exposed during parity checks in Cascade as well as reduce 

the processing time, increasing key rates. 

3.6.2 Simulation Parameters  

Parameters that are affected by sifted key length are estimated error rate deviation 

and bits exposed. Parameters held constant for this experiment are maximum number of 

passes (10), error sampling rate (.25) and desired errors per block 0.69. The factors that 

are varied in this experiment are error rate, which varies between 1%, 5%, 10%, and 

15%, and sifted key length, which is chosen to vary from 4096, 10,000, 25000, 50000, 

100000, 250000, 500000, 750000, and 1,000,000 bits.  
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3.6.3 Methodology 

In this experiment, the ideal sifted key length is determined by varying the sifted 

key lengths and the initial error rate in a series of trials. 50 trials were conducted at each 

error rate and key length up to 500,000 bits and 20 trials were conducted at each error 

rate for key lengths greater than 500,000 for a total of 1200 trials. The results of the trials 

are graphed visually to determine how the varying sifted key length affects the estimated 

error rate deviation and bits exposed. For determining success, the error estimation 

deviation graph is analyzed and the smallest spread of deviation is chosen. For bits 

exposed, success is determined by finding the smallest variation of percent bits exposed 

for each initial error rate.  

3.6.4 Assumptions and Limitations 

Initial errors are assumed to be randomly distributed for this experiment. The 

error sampling rate is fixed at 25% and the maximum number of passes is set to 10. The 

number of trials for bit lengths greater than 500000 bits is set to 20 for each initial error 

rate as a single run at higher bit lengths takes significantly longer to process than lower 

key lengths. Also, initial error rates greater than 20% are not considered as the presence of 

error rates greater than 15% are assumed to be the result of an eavesdropper in the BB84 

protocol and most other protocols (Nakassis, Bienfang, & Williams, 2004).  

3.6.5 Expected Results 

It is expected that a key length that is too small will result in a higher ratio of bits 

lost to bits remaining after the algorithm completes. Conversely, a key length that is too 
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large is expected to adversely affect algorithm performance with the parity checks within 

each pass increasing and as a result, the processing time is expected to increase as well. 

A conclusion is drawn about the necessary sifted key length with regards to the error 

estimation deviation and percent bits exposed. A proposal is made for an ideal sifted key 

length for the remaining experiments while keeping the processing time of the simulation 

in mind. 

3.7 Experiment 3: Error Rate Estimation 

3.7.1 Objective 

The intent of Experiment 3 is to discover how well the error estimation of the 

algorithm performs. The accuracy of the error estimation has a direct impact on the 

overall performance of the detection and correction functions of Cascade. It is important 

that the calculated estimated error rate is as close as possible to the actual initial error rate 

to ensure that the algorithm creates an initial block size and number of blocks that 

satisfies the desired errors per block. Bob calculates the estimated error rate by sampling 

a percentage of the sifted key and comparing it over the public channel with the same 

subset of the original error-free sifted key held by Alice. The equation for calculating the 

estimated error rate is as follows: 

                                             (6) 

3.7.2 Simulation Parameters  

Parameters that affect the error rate estimation are the initial error rate, sifted key 

length, and error distribution. Parameters held constant for this experiment are maximum 
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number of passes (10), error sampling rate (.25), sifted key length (500,000 bits) and 

desired errors per block (0.69). The factor in this experiment is the initial error rate, 

which varies from 1-20% in 1% increments. 

3.7.3 Methodology 

In this experiment, the error rate estimation is determined by varying the initial 

error rate in a series of trials. 10 trials were conducted at each error rate for a total of 400 

trials. The results of the trials are graphed visually to determine how the varying initial 

error rate affects the estimated error rate. For determining success, the error estimation is 

graphed versus the initial error rate. A linear regression is conducted on the resultant line 

and a coefficient of determination is calculated.  

3.7.4 Assumptions and Limitations 

Initial errors are assumed to be randomly distributed for this experiment. A major 

limitation of the Cascade algorithm is that the error estimation depends heavily upon the 

error distribution and the method chosen for sampling. For this experiment, error 

sampling was conducted using random sampling as opposed to uniform sampling. This 

ensures that each bit within the sifted key has an equal chance of being sampled for error 

estimation. 

3.7.5 Expected Results 

The pairs of initial error rates and corresponding error rate estimations are plotted 

and the coefficient of determination is measured. Ideally, the data will be linear and the 

coefficient of determination of the linear regression should be very close to 1. The slope 

of the resulting regression the line should have a slope of 1 as well. The closer the 
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coefficient is to 1, the more accurate the algorithm is in estimating the actual initial error 

rate and calculating block size and number of blocks accordingly.     

3.8 Experiment 4: Burst Error Analysis 

3.8.1 Objective 

The intent of Experiment 4 is to discover how well the Cascade algorithm 

performs when the error distribution is bursty and not distributed randomly or normally. 

Although the literature describes Cascade as being more resistant to burst errors than 

other protocols such as Winnow, there has not been a decisive exploration of the limits of 

Cascade in detecting and correcting burst errors. Experiment 4 explores the bounds of 

Cascade in functioning in a burst error environment by looking at several different burst 

error distributions and scenarios. Types of burst error distributions explored are a single 

burst error in addition to a random distribution of errors, and periodic burst errors of 

varying lengths and frequency. 

As can be seen in Figure 6, single burst errors occur as a cluster of errors within 

the sifted key that tends to be larger than the small clusters of errors expected in random 

error distributions. Periodic burst errors are two or more burst errors that occur with a 

periodic frequency within the key. One potential solution to burst errors is the 

introduction of a permutation of the sifted key before the first pass of Cascade is 

conducted. By permuting the key, burst error bits are spread out in a way that improves 

the operation of Cascade in a bursty environment. 
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Figure 6. Error Distribution Types 

 

3.8.2 Simulation Parameters  

Parameters of this experiment include sifted key length, type of burst error 

distribution, burst error frequency, burst error length, and initial error rate. Parameters 

held constant for this experiment are maximum number of passes (10), desired errors per 

block 0.69, and sifted key length at 500,000 bits. The factors that are varied in this 

experiment are initial error rate, which varies between 0% and 18%, burst error 

distribution, burst error frequency, and burst error length. Burst error distribution is 

chosen to be uniform or random. Burst frequency is chosen to vary from 1 burst to 1000 

bursts. The length of a burst error is given as a percentage of the total error bits that are 

contained within the burst error distribution and varies from 10%, 50% and 100%. As a 

result, the percentage of errors contained within the bursts is proportional to the overall 

error rate and error bits not contained with the burst are randomly distributed within the 

rest of the key. Trials are run both with and without an initial permutation. For permuting 

the first pass, a permute function is used to shuffle the bits of the initial key before the 

first pass of Cascade is run. 
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3.8.3 Methodology 

In this experiment, the ability of Cascade in handling burst errors is determined by 

varying the sifted key lengths and the initial error rate in a series of trials. 10 trials are 

conducted at each error rate from 1% to 18% for a series of burst error distributions, 

frequencies, and lengths. Each run is accomplished with and without a permutation 

before the first pass. The results of the trials are graphed visually to determine how the 

varying burst error distribution types, frequencies, lengths, and error rates affect the 

operation of Cascade with and without a permuted first pass. The metric chosen to 

represent the Cascade operation is throughput. Both the burst error throughput and 

throughput without burst errors is presented with permute and no permute data 

represented. 

3.8.4 Assumptions and Limitations 

The percentage of errors not contained with the burst clusters are assumed to be 

randomly distributed for this experiment. It is also assumed that the burst errors are 

contained within solid clusters and that the frequency of bursts is constant. A major 

limitation of the Cascade algorithm is that the error estimation depends heavily upon the 

error distribution and the method chosen for sampling. For this experiment, error 

sampling is conducted using random sampling as opposed to uniform sampling. This 

ensures that each bit within the sifted key has an equal chance of being sampled for error 

estimation. A major limitation is the strength of the permutation function chosen to 

permute the bits of the sifted key. Certain permutations are expected to be more optimal 

in reducing error clusters than other permutations; however, only one permutation 
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function is utilized in this experiment and it is by no means expected or intended to be an 

optimal choice. The exploration to find and define optimal or more optimal permutation 

functions is left for future studies. 

3.8.5 Expected Results 

It is expected that the successful operation of Cascade will be dependent upon the 

presence and frequency of burst errors as the error estimation will be directly impacted by 

burst error length and location. As a result, the Cascade calculation for block size will be 

impacted and the actual errors per block may differ from the desired errors per block. The 

throughput of Cascade will be negatively impacted by burst errors. By applying a random 

permutation before the first pass of Cascade, the effect of burst errors on throughput is 

expected to be minimized.  

 

3.9 Summary  

 This chapter presented the research methodology for this study.  The conceptual 

framework was defined and the parameters, factors, experimental designs, and simulation 

environment were summarized.  The data collection procedures and data analysis 

methods were also discussed.  Finally, this chapter reviewed the empirical analysis that 

will be presented in the following chapter. 
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IV. Results and Discussion 

4.1 Introduction 

 The results of the experiments described in the Methodology Section are provided 

in this chapter. An analysis of the experimental results is presented and key findings are 

highlighted. In addition, an overview of the performance of Cascade is provided. 

4.2 Experiment 1: Error Sampling Rate 

The plot shown in Figure 7 shows the data collected in the error sampling rate 

experiment for error sampling rates from 5% to 50% and initial error rates of 1%, 5%, 

and 10%. The x-axis is the error sampling rate, and the y-axis is the estimated error rate. 

The experimental runs shown in Figure 7 were collected from 300 simulation trials. 

 

 

 

Figure 7. Error Estimation as a Function of Error Sampling Rate 
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 From Figure 7, it can be seen that the error sampling rate chosen clearly has an 

effect on the error estimation rate. As the error sampling rate approaches zero, the 

estimated error rate begins to deviate from the actual error rate depending upon the 

magnitude of the initial error rate. For initial error rates of 1%, 5% sampling was 

measured to be nearly 3.5 times the deviation seen at 10% sampling. Similarly, for initial 

error rates of 10%, the 5% sampling spread was 1.36 times greater than the 10% 

sampling. Deviation is seen at all initial error rates. In addition, the higher the error 

sampling rate, the more likely the estimated error rate is to accurately reflect the actual 

error rate. Another revelation is that an increased initial error rate results in more 

fluctuation and uncertainty in the estimated error rate. Since the bits sampled for error 

estimation are discarded and unusable in creating a final key, it is important that a 

balance is maintained between choosing enough sample bits to accurately estimate error 

rate and retaining enough of the sifted key to perform adequate privacy amplification. 

 Figure 8 shows a plot of error sampling rate versus the estimated error rate 

deviation given in Equation 5. As before, the data is for error sampling rates between 5% 

and 50% and initial error rates of 1%, 5%, and 10%. The y-axis is the estimated error rate 

deviation, or how much the estimated error rate deviates from the actual initial error rate. 

Interestingly, the error rate deviation is the highest for the lowest initial error rate of 1%, 

approaching nearly 10% deviation from the actual initial error rate. An initial error rate of 

10% yields a much lower error rate deviation, with the highest deviation measured at 

only 2.5% from baseline. There is also clearly a relationship between the error sampling 

rate and the error rate deviation in that more bits sampled for error estimation yields a 

more accurate estimation of the error rate. This trend is seen for all initial error rates and 
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the measured maximum error rate deviation for all initial error rates up to 10% was no 

more than 3.8% down to error sampling rates of 35%.  

 

 

Figure 8. Estimated Error Rate Deviation as a Function of Error Sampling Rate 

 

Figure 9 shows the percentage of bits exposed for error sampling rates from 5% to 

50% and initial error rates of 1%, 5%, and 10%. The percentage bits exposed is relatively 

stable for all measured error rates as can be seen in Figure 9, and varying the error 
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the chosen sampling rate does not impact the final bits exposed in the corrected key used 

for privacy amplification. 

 As a result of the findings in Experiment 1, an error sampling rate of 25% is 

suggested to maintain a balance between error rate estimation and usable sifted key bits. 

An error sampling rate of 25% yields a maximum deviation of less than 2% for an initial 

error rate of 10% and less than 5% deviation for an initial error rate of 1%. An error 

sampling rate of 25% is satisfactory for use in the remaining experiments.     

 

 

Figure 9. Exposed Bits as a Function of Error Sampling Rate 
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plots shown in Figures 10 and 11 show the x-axis as sifted key length and the y-axis as 

the error estimation deviation. The plots for experiment 2 represent 1200 trials. 

 Figure 10 shows initial error rates of 1% to 10% and Figure 11 shows initial error 

rates from 10% to 20%. It can be seen that error rate deviation is inversely proportional to 

sifted key length since deviation increases as sifted key length decreases. The largest 

increase in error estimation deviation is in the smallest initial error rate tested, 1%. The 

deviation approached nearly 16% for a 1% initial error rate with 50,000 bits of sifted key. 

For the same sifted key length, the deviation was not more than 3.5% for a 20% initial 

error rate. For key lengths of 500,000 bits, the maximum deviation was only 4.8% at 1% 

error rate and less than 1.1% for a 20% initial error rate. For sifted key lengths of 750,000 

bits and greater, the improvements in error estimation deviation appear to plateau at 

around 2.5% for 1% initial error and less than 1% deviation at 20% initial error rates.  

 

 

 

Figure 10. Error Estimation Deviation as a Function of Key Length (1-10%) 
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From this data, it appears that shorter sifted keys result in increased error 

estimation deviation especially at lower initial error rates. This will force the Cascade 

protocol to over or underestimate the number of blocks and therefore the block size 

calculation during the Binary operations. Since the block size is typically doubled after 

each pass, the error will be doubled as well, resulting in more passes required to detect 

and correct error bits. 

 

 

Figure 11. Error Estimation Deviation as a Function of Key Length (10-20%) 
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size of the sifted key length has a direct impact on the percentage of bits exposed during 

the Cascade Protocol operation.  

 

Figure 12. Bits Exposed as a Function of Key Length (.01 Actual Error Rate) 
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evident in Figures 13, 14, and 15 as well. It is evident that the variance between bits 

exposed for all error rates is ultimately dependent upon the sifted key length chosen. 

However, the difference in bits exposed for 1% initial error rate is only 0.2% for keys 

greater than 750,000 bits. Although increasing the sifted key length reduces the spread of 

bits exposed, it also increases the processing time of the algorithm as well as the time 

needed to transmit and receive the bits. An interesting aspect of the data plotted in 

Figures 12, 13, 14, and 15 can be seen in the distribution of data points for each key 

length. There appears to be a shift in the 5% actual error rate plot where the center 

groupings of percent bits exposed for key lengths greater than 100,000 bits are translated 

upwards compared to the center of the lower key length points. It appears that the 

maximum information leakage at 5% error rate tends to be increased slightly and that 

there is not as high of an improvement in leakage as the key length is increased compared 

to the other measured error rates. In addition, the differences between the maximum and 

minimum bit leakage is greater for 5% error rates as the variation for 5% error rate is 

1.5% compared to the other rates that have a maximum bit leakage variation of only 1%. 

The variance in bit leakage for 5% error rate does not approach the variances of the 1% 

and 10% error rates until key lengths of 750,000 bits are utilized. 
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Figure 13. Bits Exposed as a Function of Key Length (.05 Actual Error Rate) 

 

Figure 14. Bits Exposed as a Function of Key Length (.10 Actual Error Rate) 
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As a result of the findings in Experiment 2, a minimum sifted key length of 

500,000 bits is suggested to maintain consistently low bits exposed and reduce estimated 

error deviation. This will ensure that the calculated block size and number of blocks 

remains closer to maintaining the desired errors per block. The number of bits exposed is 

minimized accordingly. A sifted key length of 500,000 bits yields a maximum deviation 

of less than 6% for initial error rates of up to 20% and significantly less variation in the 

percentage of bits exposed during the operation of Cascade. As the time required to 

process the sifted key in the simulation is proportional to the sifted key length, a sifted 

key length of 500,000 bits was used in the remaining experiments to reduce simulation 

runtimes to manageable durations while ensuring experimental validity.  

 

 

Figure 15. Bits Exposed as a Function of Key Length (.15 Actual Error Rate) 
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A comparison of bits exposed found in other implementations of Cascade in existing 

research can be seen in Table 3, below. Considering that Yamazaki, Nair, and Yuen used 

10,000 bits for their sifted key, the exposed bit percentages actually compare quite well at 

low error rates. The data collected at 3% error rate also corresponds well with Pearson’s 

results. The significant differences at higher initial error rates between Yamazaki, Nair, 

and Yuen’s data and the author’s data is most likely due to differences in the 

implementation of the Cascade protocol and experimental setup.  

 

 

Initial Error 

 Rate 

Author 

(500K bits) 

Author 

(10K bits) 

*YNY 

(10K bits) 

Author  

(4096 bits) 

**PER 

(4096 bits) 

0.01 0.0979 0.0982 0.0906 0.1046 ---------------- 

0.03 0.2464 0.2468 ------------ 0.2465 0.2338 

0.05 0.3710 0.3721 0.3382 0.3785 ---------------- 

0.10 0.6394 0.6355 0.5753 0.6375 ---------------- 

0.15 0.8646 0.8653 0.7678 0.8711 ---------------- 

* (Yamazaki, Nair, & Yuen, 2006) ** (Pearson, 2004) 

Table 3. Percent Bits Exposed Comparison to Prior Research 

 

4.4 Experiment 3: Error Rate Estimation 

The plot shown in Figure 16 shows the data collected in the error rate estimation 

experiment for initial error rates from 1% to 20% and a sifted key length of 500,000 bits. 

The x-axis is the initial error rate and the y-axis is the estimated error rate. The plot for 

experiment 3 is for 400 trials. 
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Figure 16. Actual Error Rate versus Estimated Error Rate 
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4.5 Experiment 4: Burst Error Analysis 

The plot shown in Figure 17 shows the data collected for the burst error 

experiment for a single burst error containing 50% of the error bits and initial error rates 

of 1% to 18%. The x-axis is the chosen error sampling rate, and the y-axis is the 

estimated error rate. The plots for experiment 4 represent 1200 trials. For error rates 

above 18%, the algorithm exposes 100% of the sifted key bits. Cascade is more robust 

against burst errors than initially expected: this is most likely the result of the already 

extensive binary parity checks that are performed during the passes. Plot 17 shows 

Cascade’s throughput for a sifted key with random error distribution, a single burst error 

with an error ratio of 50%, and a single burst error with permutation before the first pass. 

 

 

Figure 17. Throughput for a Single Burst Error (50% of Errors contained in Burst) 
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From the plot, it is clear that single burst errors do have an effect on the 

throughput of the Cascade protocol. This can be seen especially at higher initial error 

rates starting from 12% and higher. Applying a random permutation to the sifted key 

before the initial pass appears to have mitigated the effects of single burst errors as the 

performance with a permutation is similar to the random error case without burst errors. 

Essentially, there appears to be no difference between the performance of Cascade with 

and without burst errors as long as a permutation is applied before the first pass.   

 Figure 18 shows a single burst error with an error ratio of 100%. The impact of 

the single burst error is magnified when the burst error contains all the error bits. In fact, 

the throughput drops by up to 8% at error rates below 12%. The effect at and above 12% 

error rate is even higher, with an average throughput reduction of up to 15%.   At error 

rates greater than 16%, the throughput drops to zero as all bits are effectively exposed. As 

with the 50% ratio burst, a permutation of the first pass mitigates the effect of the burst 

error and the permuted performance approaches that of the random error case. Both the 

large and small single burst error cases show a smaller effect on throughput at lower error 

rates. For instance, the throughput for small single bursts is negligibly impacted for error 

rates of 4% and smaller. Similarly, large single bursts do not being to significantly impact 

the throughput until around 3% error rates.     
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Figure 18. Throughput for a Single Burst Error (100% of Errors contained in 

Burst) 
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Figure 19. Throughput for 1000 Periodic Burst Errors (50% of Errors contained in 

Bursts)  
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burst error contains nearly all the error bits. The drop in throughput approaches 8% near 

an 8% initial error rate and increases as the error rate increases. As with the 50% ratio 

burst, a permutation of the first pass mitigated the effect of the burst error and the 

permuted performance approaches that of the random error case. Interestingly, for the 

non-permuted case, all bits were exposed for error rates over 16%. After the permutation, 

error rates above 18% exposed all bits for zero throughput.    

   

 

Figure 20. Throughput for 1000 Periodic Burst Errors (80% of Errors contained in 

Bursts) 
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first pass, the affects of any random or systemic burst errors can be alleviated, 

maximizing available throughput. Permutation can break up clumps of errors that occur 

naturally in random error distributions, reducing error masking and raising throughput.    

4.6 Cascade Protocol Performance 

The throughput of an error detection and correction algorithm is defined as the 

percentage of the sifted key that remains after reconciliation is performed. The theoretical 

limit on throughput is given by Kollmitzer and Pivk and the minimum number of bits 

exposed by any reconciliation protocol is the Shannon Entropy of the error rate as given 

by Equations 2 and 3, defined above in Section 2 (Kollmitzer & Pivk, 2010)  (MacKay, 

2005). Throughput is directly affected by the initial error rate and a higher error rate is 

expected to increase the number of bits exposed due to increased parity checks and 

subsequent discarding of the exposed bits. As a result, a smaller initial error rate should 

result in a higher throughput that is closer to the theoretical bound. Figure 21, shown 

below, reveals the theoretical bound on throughput as the solid line along with the 

experimentally discovered throughput using randomly distributed errors for Cascade. The 

throughput is measured as bits remaining after reconciliation divided by total sifted key 

bits. The plot reveals that Cascade performs exceedingly well at lower initial error rates 

and the performance drops as error rate increases. The throughput does not seem to be 

affected greatly by sifted key length. A key length of 10,000 bits varies slightly in 

throughput compared to 500,000 bits but overall, the difference is not significant. 

Depending upon the final key size needed for the privacy amplification step, the Cascade 

algorithm can yield usable key bits up to around 18% error rate. However, in practice an 
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error rate above 15% usually results in the forced failure of the algorithm as an error rate 

above 15% is seen as evidence that an eavesdropper is present, thus failing to meet the 

established error rate abort parameter.   Sugimoto and Yamazaki and Yan et. al. found 

similar throughput results as shown in Table 4. However, both used different 

implementations of Cascade with differing initial block sizes.  

 
Figure 21. Cascade Theoretical and Experimental Throughput 

 

There does appear to be an interesting difference between the throughputs and error rates 

for the data presented in this research and the data found by Sugimoto and Yamazaki and 

Yan et.al. At 1% error rate, there is roughly a 0.5% reduction in throughput versus the 

literature results. At 3% error rate, the throughput difference is 1%, the difference at 3% 

error rate is 2%, and the difference at 15% error rate is nearly a 10% reduction in 

throughput. This effect is most likely due to design choices in protocol implementation 

and experimental setup. In addition, there does not appear to be an appreciable 

throughput difference between shorter and longer sifted key lengths. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

T
h

ro
u

g
h

p
u

t 
(B

it
s)

Error Rate

Experimental Data: 10K Bits

Experimental Data: 500K Bits

Theoretical Bound



 

58 

 

Initial Error  

Rate 

Author (500K bits, 

Dynamic blk sz) 

Author (10K bits, 

Dynamic blk sz) 

Sug* (10K 

bits, 73 blk sz) 

Yan** (10K 

bits, 73 blk sz) 

0.01 0.9020 0.9017 0.9090 0.9067 

0.03 0.7535 0.7531 0.7735 ---------- 

0.05 0.6289 0.6278 0.6609 0.6623 

0.075 0.4897 0.4956 0.5333 ---------- 

0.10 0.3605 0.3644 0.4233 0.4139 

0.125 0.2443 0.2436 0.3245 ---------- 

0.15 0.1353 0.1346 0.2305 0.2187 

* (Sugimoto & Yamazaki, 2000) ** (Yan, Ren, Peng, Lin, Jiang, & Liu, 2008) 

Table 4. Cascade Throughput Comparison from Prior Research 
 

Figure 22 gives the bits exposed as a function of error rate for the Cascade 

algorithm. The resulting line is not quite linear (dotted line), exhibiting more of a 

polynomial trend. For this graph, the initial key length was 500,000 bits. For a 10% error 

rate, slightly less than half of the initial key bits have been exposed. At 20% error nearly 

all of the bits have been exposed during the operation of the algorithm.  

Figure 23 shows the theoretical and experimental leakage for the implementation 

of the Cascade algorithm. This graph is the complement to the throughput graph as it 

shows the fraction of exposed bits versus the error rate. As with the throughput, the 

fraction of bits exposed is very low for low error rates and increases as error rate 

increases. The bit sampling rate used for the Cascade algorithm has a large effect on the 

experimental leakage and throughput since the bits sampled are discarded before the 

algorithm is executed. As a result, optimizing the bits sampled becomes a tradeoff 

between higher throughput or better error estimation and algorithm performance. If error 

estimation is inaccurate, throughput decreases as more parity checks are needed to correct 

the errors due to incorrect choice of block size and number of blocks. 
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Figure 22. Cascade Bits Exposed as a Function of Error Rate 

 

Figure 23. Cascade Theoretical and Experimental Leakage 

4.7 Summary 

This chapter presented the results of the experiments described in Chapter 3 and 

discussed conclusions drawn from the data. The following chapter will discuss the overall 

results of this research and make recommendations for future research.   
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V. Conclusions 

 

5.1 Research Summary 

 Quantum key distribution is an interesting area within the field of cryptography. It 

is only the latest step in the long history of methods used to ensure that secret information 

remains secret. Unfortunately, even though the dawn of QKD began in the early 70’s and 

80s, our technological progress and level of achievement has not kept pace with the ideas 

and theories regarding quantum mechanics, although it is hastening the obsolescence of 

classical encryption methods and schemes rapidly. Although the theory that a true ideal 

quantum key distribution system is perfectly secure is supported, the technology needed 

to create an ideal quantum key distribution system is out of reach for the time being and 

finding solutions for the problems on the horizon are important. But the technology that 

is available is good enough to implement quantum key distribution using less than ideal 

components with the addition of several important steps to minimize weaknesses in 

hardware and implementation. The steps that make quantum key distribution possible 

using today’s technology are employed within various protocols and implementations 

that add steps such as error detection and correction and privacy amplification to 

imperfect hardware. As a result, powerful quantum key distribution systems are being 

researched, studied, and even used in real world transactions.  

Reconciliation protocols are used in every quantum key distribution realization as 

a result of the importance of ensuring the detection of simple transmission errors and 

revealing if an eavesdropper is present. Due to real world limitations in transmission and 

detection systems as well as potentially lossy transmission media and eavesdroppers, 
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reconciliation protocols are critical to the operation of QKD systems using current 

technology. The Cascade secret key protocol is one of several that is used for 

reconciliation and although there has been some study into the efficacy and efficiency of 

the protocol, much of the research is focused on aspects of the algorithm’s operation 

using inputs that tend to be focused in a very confined problem space such as small key 

lengths (faster processing), while others, such as (Maurer, 1993), and (Lo, 2003), only 

delve into mathematical proofs and theory. The purpose of this research was to explore 

the limits of the protocol and attempt to find ideal or more ideal parameters that could be 

used to optimize the performance of Cascade. Factors such as error sampling rate, key 

length, throughput, information leakage, and the protocol’s performance in the presence 

of various error distributions were explored in an attempt to expand the knowledge of the 

workings of Cascade and improve upon its performance. 

5.2 Findings 

 The error sampling rate is an important factor of Cascade in that it is ultimately 

used with the desired errors per block in the calculations for block size and number of 

blocks in the form of an estimated error rate. As a result, the error sampling rate and 

subsequent error estimation have a direct effect on the accuracy and efficiency of 

Cascade for error correction. In the research, it was found that the error sampling rate 

does not adversely affect bit leakage, but is an important factor in error estimation 

accuracy. As the error sampling rate is reduced, the estimated error rate begins to deviate 

from the actual error rate by up to 3.5 times when 5% error sampling rate is chosen over 

10% error sampling. Conversely, the higher the error sampling rate, the more likely the 
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estimated error rate is to accurately reflect the actual error rate. In addition it was 

demonstrated that the chosen sampling rate does not impact the final bits exposed in the 

corrected key used for privacy amplification. The potential benefit of choosing ideal error 

sampling rates becomes negligible after about 25%. It was shown that the commonly 

used error sampling rate of 50% is inefficient and wasteful and an error sampling rate of 

25% is suggested to maintain a balance between error rate estimation and usable sifted 

key bits. 

Error estimation and sifted key size are critical to the efficient operation of 

Cascade as well. The Cascade protocol was shown to be very accurate in error rate 

estimation up to 18% initial error rate with average error rate deviation of less than 5% 

for 1% initial error rates and less than 1% for error rates up to 20%. As a result, the 

protocol is able to correctly calculate block size and number of blocks sufficient to detect 

and resolve errors efficiently. The research revealed that that the deviation between actual 

error rate and estimated error rate increases as sifted key length decreases with the largest 

increase in error estimation deviation occurring in the smallest initial error rate tested, 

1%. The data show that shorter sifted keys result in decreased error estimation power 

especially at lower initial error rates. As a result, the Cascade protocol can tend to over or 

underestimate the number of blocks and block size during the Binary bisection, resulting 

in more passes required to detect and correct error bits. However, for sifted keys of 

750,000 bits or greater, the improvement in error estimation is negligible and it is 

unlikely that improving error estimation deviation to less than 1% will have any 

additional benefit to the performance of Cascade. An interesting finding is that the sifted 

key length has a direct impact on the number of bits exposed or leaked from the protocol. 
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The maximum ratio of bits exposed is reduced as key length increases, although the 

minimum percentage of bits exposed increases as key length increases. The data show an 

asymptotic trend of maximum and minimum bits exposed leveling out as the sifted key 

length increases. As a result, it appears that by choosing a key size within the “sweet 

zone” between ideal minimum and maximum exposure, one can optimize for maximum 

available key remaining for privacy amplification and retain the best possible ratio of 

usable bits to discarded bits. The most important takeaway regarding sifted key length is 

that the length of the input key chosen does not just affect the size of the reconciled key; 

it actually has a direct impact on how well the Cascade protocol operates. In order to 

optimize QKD as much as possible, thought should be given to balancing the minimum 

acceptable reconciled key length with the effect that that the requisite initial sifted key 

will have on the efficiency of the reconciliation protocol when Cascade is utilized. 

Cascade was shown to perform fairly well on several error distribution cases 

involving single and periodic burst errors, but it was found that a permutation before pass 

zero restored the throughput back to random error distribution performance. Cascade was 

found to be more robust against burst errors than initially expected, although burst errors 

do have a negative effect on the throughput of the protocol especially at higher initial 

error rates. In fact, it was found that single burst errors induce more degradation to 

throughput at higher error rates than periodic burst errors. However, applying a random 

permutation to the sifted key before the initial pass mitigates the effects of single burst 

errors. This is a result of the error separating effect that the permutation forces, 

essentially reorganizing the burst error bits into a distribution that is more like a random 

burst-free distribution. A modification to Cascade to always permute the sifted key prior 
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to the first pass is recommended to minimize the effects of potential burst errors and 

allow the protocol to operate at maximum throughput. 

Overall, Cascade performs exceedingly well at low error rates through 10% but is still 

robust enough to yield usable key bits up to 18% error rate if required. By carefully 

tweaking the input parameters while understanding that they are interrelated, one can 

effectively maximize the operational efficiency and usefulness of the Cascade secret key 

reconciliation protocol and ensure that it continues to provide accurate and reliable error 

detection, correction, and eavesdropper awareness for today’s quantum key distribution 

systems. 

5.3 Limitations 

 There are several important limitations to the research presented in this paper. 

First, the implementation of the Cascade protocol was intended to be as close as possible 

to the original proposed by Brassard and Salvail in 1994. Some improvements made by 

Brassard and Salvail to the protocol were included in this implementation, specifically, 

logic for how many passes are run before the protocol finishes. Another limitation is the 

method utilized to provide random generation of the sifted key and the initial introduced 

errors. The code utilizes the Mersenne Twister pseudo-random number generator. A 

cryptographically secure pseudo-random number generator may be a better choice for 

future implementations of Cascade simulation software and increase the fidelity of the 

operation as compared to actual hardware implementations of the protocol in quantum 

key distribution. A final limitation of the research presented in this paper is that the 

software is monolithic in nature. In other words, the simulation of both Alice and Bob’s 
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buffers and Cascade interactions were conducted using only one software 

implementation. In reality, the only information that Alice and Bob have in common is 

the information passed over the quantum and public channels and processing of their 

respective sifted keys is done separately by each party.   

5.4 Future Research Recommendations 

 There are several areas of improvement that could be performed in future research 

in order to advance the operational efficiency of the Cascade secret key reconciliation 

protocol. The following is a list of areas that the Cascade protocol would benefit from 

further study. 

1. Along with Cascade, there are many other protocols and algorithms that are 

used for error detection and correction. Some of these protocols include 

Winnow, Turbo Codes, and Low Density Parity Check codes. In addition, 

there is a wide variety of variation in the implementations of the algorithms 

with many different instantiations and modifications of each. A thorough 

comparison of the Cascade protocol with other error detection and correction 

protocols and their implementations would be critical in determining which 

protocols work best in different situations.    

2. Improvements and optimizations to the C++ implementation of the Cascade 

Protocol used for this thesis could increase both the fidelity and simulation 

efficiency of the software. Additional algorithm implementations could be 

added to the software to compare different tweaks and modifications to the 

Cascade protocol.  
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3. An in depth study of the permutations performed in the Cascade Protocol 

could greatly improve upon the efficiency of the protocol in distributing error 

bits within the blocks. The distribution of error bits during the various passes 

of the protocol depends upon the permutation chosen. It is likely that some 

permutations are better than others in breaking up blocks of errors that might 

increase the number of parity checks needed to correct errors, resulting in 

reduced throughput and more information leakage. By finding optimal 

permutations, leakage could be reduced and throughput increased resulting in 

an overall improvement in the efficiency of the Cascade protocol. 

4. A deeper view into information leakage during the public channel 

communications between Alice and Bob during Cascade could also be 

performed in order to further characterize exactly how much information is 

being leaked. Currently, error detection and correction protocols treat every 

leaked bit as having revealed the same amount of information to a potential 

eavesdropper, in essence assuming the worst case scenario. If certain bit 

transactions reveal more information than others, it would make sense to 

characterize the amount of information leaked and adjust the privacy 

amplification to optimize information leaked and improve overall throughput 

by only discarding bits in transactions with higher probability of leakage 

while retaining bits with low probability. This would be especially beneficial 

in situations where sifted key lengths are constrained and every bit is needed 

to ensure operation of quantum key distribution in priority environments.  
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5. Although software based simulations are useful for exploring the problem 

space while taking up a relatively light footprint, a more true to reality 

simulation would include hardware in the loop capability. It would be very 

beneficial to study the nuances of the Cascade protocol using a hardware 

implementation of a quantum key distribution setup using FPGA boards and 

actual hardware to pull out finer details about the operation of the protocol 

within a realistic environment. With software simulations, only the essence of 

reality can be captured and if an effect of behavior is missed and not encoded, 

it will not affect the simulation. Since most commercial quantum key 

distribution system protocols are “hardwired” and unchangeable, a fully 

parameterized hardware implementation of Cascade and other protocols 

within a realistic QKD system would allow for the true trade space of the 

algorithms to be explored, increasing the likelihood of true optimizations that 

could drastically improve the efficacy and efficiency of working QKD 

systems. 
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Appendix A: BB84 QKD Protocol Example 

 

 

 

Quantum Channel 
                    

                     Alice's Random key Bits 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 

Alice's Random basis + + X + X X + X X + + + X + + X X + X + 

Alice's qubit polarization 

Bob's random basis 
measurement 

+ + + + X X + + X + + X X + + X X X X + 

Bob's received bits 1 - 1 1 0 1 0 1 - 0 1 1 0 1 0 - 0 1 - 0 

                     

Public Channel 
                    

                     

Bob announces basis choices + 
 

+ + X X + + 
 

+ + X X + + 
 

X X 
 

+ 

Alice sends basis confirmation 
  


  


 


 


  


Alice and Bob share sifted key 1 
  

1 1 1 0 
  

0 1 
 

0 1 0 
 

0 
  

0 

Bob reveals random bit subset 1 
   

1 
       

0 
      

0 

Alice confirms bits 
   


       


      



Alice and Bob share secret key 
   

1 
 

1 0 
  

0 1 
  

1 0 
 

0 
   

 

 

 

 
+ Rectilinear Basis 

X Diagonal Basis 
 

 0-degree Polarization 

 90-degree Polarization 

 135-degree Polarization 

 45-degree Polarization 

- No bit received 

 Successful check (matching basis or bit) 
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Appendix B: Cascade Protocol Pseudo Code 
 
Binary Pseudo Code 

 

doBinary(Pass, Min, Max, InCascade) 

{ 

  Validate input parameters are legal 

  Determine Range for this block 

  Increment bits exposed 

  Calculate parity of Alice(Min,Max) 

  Calculate parity of Bob(Min,Max) 

  Compare parity bits 

  if(Parity Does Not Match) 

  { 

    switch(Range) 

    { 

      case 0: 

        // Single bit range 

        Correct Error 

        if( (Pass > 0) && (Not InCascade) ) 

        { 

          doCascade(Pass, Min); 

        } 

        break; 

 

      case 1: 

         // Two bits range, so check the first one 

         Calculate parity of Alice(Min,Min) 

         Calculate parity of Bob(Min,Min) 

         Increment bits exposed 

         Compare parity bits 

         if(Parity Does Not Match) 

         { 

            // first bit mismatches 

            Correct Error 

            if( (Pass > 0) && (Not InCascade) ) 

            { 

             doCascade(Pass, Min); 

            } 

        } 

        else 

        { 

           // second bit mismatches 

           Correct Error 

           if( (Pass > 0) && (Not InCascade) ) 

           { 

            doCascade(Pass, Max); 

           } 

   

        } 

        break; 

 

      default: 

         // Range is more than 2 bits 

         // check first half 
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         low1 = Min; 

         high1 = Min + ( Range / 2 ); 

         low2 = high1 + 1; 

         high2 = Max; 

         Calculate parity of Alice(low1,high1) 

         Calculate parity of Bob(low2,high2) 

         Compare parity bits 

         if(Parity Does Not Match) 

         { 

            // error in the first half 

            doBinary(Pass, low1, high1,0); 

         } 

         else 

         { 

            // error in the second half 

            doBinary(Pass,low2,high2,0); 

         } 

         break; 

    } 

  } 

} 

 

doCascade(Pass, ErrorBit) 

{ 

  for(Each pass from 0 to Pass) 

  { 

    Find block min and max for this pass 

    Find Index for this block this pass 

    doBinary(Index,Min,Max,1); 

  } 

} 

 

SimulateCascade() 

{ 

   Start timer 

   Get command line arguments 

   Open output files 

   Initialize variables 

   Initialize Permute and Reverse Permute arrays 

   Initialize Random Number Generator 

 

   For(each trial from 0 to NumberOfTrials) 

   { 

     Initialize all bit buffers 

 

     if(UseAliceBobFile) 

     { 

        Read input from files 

        Identify errors between Alice and Bob 

        Calculate actual error rate 

     } 

     else 

     { 

        Fill Alice's buffer with random data 

        Copy Alice's buffer to Bob's buffer 
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        Corrupt Bob’s buffer with errors based upon command line 

selection 

        Permute buffers, if necessary 

        if(Use Sampling) 

        { 

          Determine estimated error rate 

        } 

        else 

        { 

          Use user supplied error estimation 

        } 

     } 

     Determine initial block size 

     Determine last pass 

   

     for(each Pass) 

     { 

        for(each Block) 

        { 

           doBinary(CurrentPass, low, high, 0); 

        } 

     } 

    Calculate statistics 

    Write statistics 

} 
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